

Mathematics Specialist Units 3,4 Test 4 2018

Section 1 Calculator Free Integration and Applications of Integration

STUDENT'S NAME

DATE: Friday 20 July

TIME: 36 minutes

MARKS: 36

INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (4 marks)

Determine

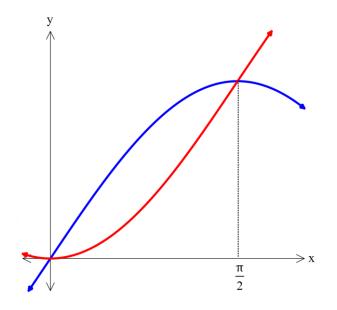
 $\int x\sqrt{x-3}dx$

let u = x - 3

2. (9 marks)

(a)
$$\int e^x \sin(e^{x+3}) dx$$
 let $u = e^{x+3}$ [4]

(b)
$$\int_{2}^{e} \frac{1}{x \ln \sqrt{x}} dx \qquad \text{let } u = \ln \sqrt{x}$$
 [5]


3. (9 marks)

(a)
$$\int \sin^3 t \cos^2 t \, dt$$
 let $x = \cos t$ [5]

(b)
$$\int \frac{8x-7}{2x-3} dx$$

[4]

4. (7 marks)

Shown above are the functions $y = \sin x$ and $y = 1 - \cos x$. The area enclosed between the two graphs is rotated about the x-axis. Determine the exact volume of the solid created.

5. (7 marks)

(a) Determine
$$\int \frac{4x+2}{x^2+x-2} dx$$
 [2]

(b) Determine
$$\int \frac{2x+10}{x^2+x-2} dx$$
 [5]

Mathematics Specialist Units 3,4 Test 2 2018

Section 2 Calculator Assumed Integration and Applications of Integration

STUDENT'S NAME

DATE: Friday 20 July

TIME: 14 minutes

MARKS: 14

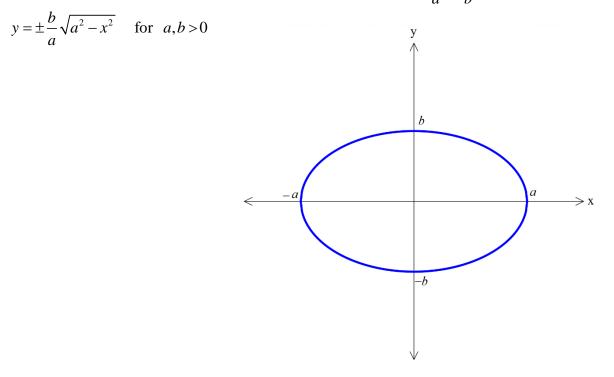
INSTRUCTIONS:

Standard Items:Pens, pencils, drawing templates, eraserSpecial Items:Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

Intentional blank page

6. (6 marks)


The function y = f(x) is a continuous curve in the first quadrant. Some values are shown in the table below.

x	0	1	2	3	4	5
f(x)	8.9	11.7	14.3	16.6	18.6	20.4

(a) Determine an approximation for the area between the curve and the *x*-axis for $1 \le x \le 4$ by summing the areas of trapeziums. [4]

(b) Is the estimation in (a) less than or greater than the exact area? Justify your answer. [2]

The ellipse drawn below is centred at the origin and has equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ or

(a) Show the area of the ellipse is given by $\frac{4b}{a}\int_{0}^{a}\sqrt{a^{2}-x^{2}}dx$ [2]